
Systems Designers (1986); CORE - the manual; Internal Publication, SD-Scicon.

Teichroew D.& Hershey E. (1977); PSL/PSA: a computer-aided technique for structured
documentation and analysis of information processing systems; IEEE Trans. on Software.
Engineering, SE-3 (1), pp41-48.

Zave P. (1982); An operational approach to requirements specification for embedded systems; IEEE
Trans. on Soft. Eng., SE-8 (3) , pp250-269.

Zave P. (1989); A Compositional Approach to Multi-Paradigm Programming; IEEE Software,
September 1989.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

23

Acknowledgements

This research has been supported by the Rome Air Development Centre, Griffiss Air Force Base, under
contract number F-49620-85-C-0132. The views and conclusions contained in this paper are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of the Rome Air Development Center or the U.S. Government.

We would like to acknowledge the contribution made by our colleagues Colin Potts and Keng Ng.
Thanks also to our partners SD-Scicon and particularly to Ken Whitehead.

References

Boehm B. (1982); Software Engineering Economics; Prentice Hall.

Finkelstein A. (1987); Reuse of formatted specifications; IEE Software Engineering Journal,
September, pp186-197.

Finkelstein A., Kramer J. & Goedicke M. (1990); ViewPoint Oriented Software Development; Proc. of
3rd International Workshop Software Engineering & its Applications; Cigref EC2 V1, pp337-351.

Jackson M. (1975); Principles of Program Design; Academic Press.

Jackson M. (1990); Some Complexities in Computer-Based Systems and their implications for System
Development; Proc. of IEEE Int. Conf. on Computer Systems and Software Engineering (CompEuro
90), 344-351.

Klausner A. & Konchan T. (1982); Rapid prototyping and requirements specification using PDS;
ACM SIGSOFT Software Engineering Notes, 7(5), pp96-105.

Kramer J. & Ng K. (1988); Animation of Requirements Specifications; Software - Practice and
Experience, 18(8), pp749-774.

Kramer J., Finkelstein A., Ng K., Potts C. & Whitehead K. (1987);"Tool Assisted Requirements
Analysis: TARA final report”; Imperial College, Dept. of Computing, Technical Report 87/18.

Kramer J., Ng K., Potts C. & Whitehead, K. (1988); Tool support for Requirements Analysis; IEE
Software Engineering Journal, 3(3), pp86-96.

Maibaum T., Khosla S. & Jeremaes P. (1986); A modal [action] logic for requirements specification;
Software Engineering '86; (Eds) Brown P. & Barnes D.; Peter Peregrinus.

Mullery G. (1979); CORE - a method for controlled requirements specification; Proc. 4th Int. Conf.
Software Engineering; pp126-135; IEEE Comp. Soc. Press.

Ross D. (1977); Structured Analysis (SA): a language for communicating ideas; IEEE Trans. Soft.
Eng., SE-3 (1), pp16-34.

Sheil B. (1984); Power Tools for Programmers; (In) Interactive Programming Environments; (Eds)
Barstow D., Shrobe H. & Sandewell E.; McGraw Hill.

Stephens M. & Whitehead K. (1985); The Analyst - a workstation for analysis and design; Proc. 8th
Int. Conf. Software Engineering; pp364-369; IEEE Comp. Soc. Press.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

22

most sensible strategy in this setting is to provide a variety of powerful means of viewing and
understanding such specifications. Animation is one such technique. Other effective validation
techniques also aid reuse.

As mentioned, TARA provided us with considerable experience of and respect for CORE and for CORE
viewpoints as a means of domain decomposition. The CORE viewpoint, essentially an agent or role,
combines a domain structure with the distribution of authority for making decisions about the
specification. As such it provides a powerful means of structuring requirements specification and
organising requirements elicitation.

It is clear form the above comments that TARA exerted a substantial influence on our current work on
ViewPoints. We believe that our notion of ViewPoints provides a sound and systematic basis for
constructing and presenting methods, for managing and guiding method use, and also for the
provision of tool assistance.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

21

An additional benefit which seems to follow from the identification and encapsulation of style
(representation) and work plan (specification method) in a single ViewPoint Template is the
opportunity for CASE tool support. Individual support could be designed for each template in a
particular method, thereby simplifying the complexity of the tool in much the same way as one expects
to simplify the steps and expression of that particular ViewPoint specification. We can then envisage
method tool support as comprising a configuration of template support tools, configured to suit the
particular method adopted.

The work on ViewPoints reported in this article is in its early stages (Finkelstein et al 1990) and
requires considerable further work. A major objective is to complement our intuitive use of
ViewPoints with a comprehensive formal description. We are investigating the use of modal action
logic as a suitable base for such a description.

We believe that ViewPoints provide a systematic basis for constructing and presenting methods.
ViewPoints would be particularly useful in the description of mixed approaches such as those
described as “multiparadigm programming” (Zave 89). The ViewPoint approach is also strongly
related to Jackson’s recent work on views and implementations (Jackson 90) in which he describes
“complexity in terms of separation and composition of concerns”, and focuses on the problems of
coping with the relationships between concerns.

Our short term goal includes developing descriptions, in the ViewPoint style, of a repertoire of
standard information systems development methods such as SSADM and JSD. This would act as a
means of refining the ViewPoint concept and of illustrating the utility of the approach. In the longer
term we intend to develop a ViewPoint based method for developing reconfigurable and extensible
distributed systems.

7 Conclusions

The insights and experience derived from working on the TARA project have been considerable. This
is a result both of the specific contributions of the work and of the increased respect we have developed
for CORE as a method. In particular it has lead us to favour support for software development by
methods consisting of many, relatively simple, representations tightly coupled to each other by large
numbers of consistency checks. In this setting an explicit and enactable work plan provides a means
for both managing the enforcement of the consistency checks and managing the consequences of
redundancy.

Given a method with a work plan and with a rich collection of heuristics the method advice must be
delivered to the point at which the work - the construction of the specification - is actually being carried
out. The granularity of this method advice must be appropriate to the tasks being performed.

TARA has also given us a much better understanding of how people work with CASE tools. In
particular we have come to realise that work is often left incomplete and inconsistent, that users move
rapidly between different representations changing their minds frequently, and that analysis and
validation are tightly interleaved with the construction of the specification. We believe that CASE
should support this mode of work rather than attempt to constrain it.

A mundane but nonetheless significant consequence of this is the importance of efficiency and
performance in CASE implementation. Raw speed in navigating around the specification,
performing analysis and constructing diagrams is extremely important. This militates against
CASE architectures which are centred on large (and slow) databases.

Support for reuse needs to be engineered into the representation schemes underlying a method from the
start. Without such support taking advantage of existing specifications will always be difficult. The

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

20

a domain defines which part of the "world" delineated in the style (given that the style defines a
structured representation) can be seen by the ViewPoint (for example, a lift-control system would
include domains such as user, lift and controller);

a specification, the statements expressed in the ViewPoint's style describing its particular
domain;

a work plan, how and in what circumstances the contents of the specification can be formulated
and changed;

a work record, an account of the current state of the development.

As can be seen, the ViewPoint encapsulates knowledge in the form of various slots e.g. a style and a
specification. The slots style and work plan represent general knowledge, in the sense that it can be
applied to a wide range of problems. In contrast to this the knowledge encapsulated in the slots domain,
specification and work record of a ViewPoint represent specific knowledge related to one particular
problem. The specification is given in a single consistent style and describes an identified domain of
the problem area. The work record describes the current state of the specification with respect to the
development activities and concerns of the ViewPoint. This would include interaction between
ViewPoints to transfer information and perform activities such as consistency checks.

Since a ViewPoint is also a means to express a certain perspective on a problem or system, one would
like to have the ability to see or express different parts of a problem or system from the same
perspective. Thus a kind of "ViewPoint type" is required which can be used as the template from which
to create ViewPoints instances of that type. A ViewPoint template consists of the general slots of a
ViewPoint, in which only the style and the work plan have been defined. A method in this setting is a
set of ViewPoint templates and their relationships, together with actions governing their construction
and consistency.

The "architecture" of the development process is thus a number of ViewPoints expressing partial
knowledge of a system from a particular domain point of view, concentrating on a particular aspect of
concern (responsibility) and at a particular stage in the development process. This "ViewPoint space"
can be considered as a configuration of ViewPoints, with the relations between them expressed as
interconnections. The notion of structure is fundamental. Both the internal information and the
interrelationships seem to be best expressed in some organised, structural form.

The collection of all ViewPoints for a particular stage, such as design, can be considered to provide all
relevant information for the design specification. This could perhaps be considered a ‘horizontal cut’
in the ViewPoint space.

Furthermore, we suggest that the domain inspired ViewPoints which originate at the initial
requirements elicitation and specification stage are actually "stable", and that they provide a
comprehensible and sound basis for viewing the information created in later stages of the process.
This information may well be dispersed in many ViewPoints at these later stages. Hence, there is
also a ‘vertical cut’ in the ViewPoint space which expresses all the stages in the process but from a
single domain point of view.

6.3 Status & Experience

We believe that ViewPoints provide a basis for unifying models of the information systems
development process and models of software structure. The partitioning of knowledge exemplified in
the ViewPoints approach facilitates distributed development, the use of multiple representation
schemes and scalability. Furthermore, the approach is general, covering all phases of the information
systems development process from requirements to evolution.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

19

not suitable for design. What appears an appropriate structure for carrying out design is not suitable
for construction and reuse and so on. Because there is no single structuring approach which is wholly
appropriate to all the activities in information systems development some important aspects of the
development process, notably requirements engineering and system management, have been
neglected.

Multiple Formal Representation Schemes: Much effort has been devoted to developing ever richer and
more sophisticated formal representation schemes. On the surface this appears to be a worthwhile
enterprise - if a representation scheme is made more expressive the task of elicitation and
specification should, in theory, become easier. This has however not proved to be the case:

the learning overhead in the use of these schemes is significant;

the development of such schemes is extremely difficult, in particular developing sound and
adequate verification or proof schemes;

such schemes are often very different from the conventional (and reasonably well understood
schemes) used in information systems engineering practice and consequently pose difficulties
for technology transfer;

the richer the representation scheme the easier it is to write baroque and unreadable descriptions;

although a more expressive representation scheme may still theoretically permit validation of
complex properties of a description (for example, generation of consequences using formal
reasoning) it generally makes simple validation by inspection more difficult, and automated
aids less likely;

no single person may want, or be able to, use the full expressive power of the representation
scheme.

There is an alternative to the “big language” approach. The “multiple representation” approach in
which each participant is allowed to use simple "bespoke" representations for eliciting, presenting
and determining properties of relevant parts of the specification world. The problem that arises from
adopting this approach is that, if many different representations are used, how can potential
inconsistencies and conflicts between them be detected and resolved?

6.2 Approach

We propose the use of ViewPoints as both an organising and a structuring principle in information
systems development. In outline, a ViewPoint captures a particular role and responsibility performed
by a participant at a particular stage of the development process. The ViewPoint must encapsulate only
that aspect of the application domain relevant to the particular role, and utilise a single appropriate
scheme to represent that knowledge.

A ViewPoint is a loosely coupled, locally managed object which encapsulates partial knowledge about
the application domain, specified in a particular, suitable formal representation, and partial
knowledge of the process of information systems development.

A ViewPoint is a combination of the following parts or slots:

a style, the representation scheme in which the ViewPoint expresses its role or view (examples of
styles are data flow analysis, entity-relationship-attribute modelling, Petri nets, equational logic,
and so on);

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

18

domain into viewpoints is of considerable benefit. We now describe our current work.

6.1 Objectives

Our current work is aimed at developing a new approach to information systems development. The
approach, which we call the "ViewPoint approach", explicitly avoids the use of a single representation
scheme or common schema. Instead, multiple ViewPoints are utilised to partition the domain
information, the development method and the formal representations used to express information
systems specifications. System specifications and methods are then described as configurations of
related ViewPoints. This partitioning of knowledge facilitates distributed development, the use of
multiple representation schemes and scalability. Furthermore, the approach is general, covering all
phases of the information systems development process from requirements to evolution.

The concept of a ViewPoint is a synthesis of the concepts of "view" (partial specification) and
"viewpoint" which were successfully exploited in other research projects. The TARA project provided
us with considerable experience of and respect for CORE and for CORE viewpoints as a means of
domain decomposition. The CORE viewpoint is closely related to agents or roles in that it takes into
account the way in which authority for making decisions about the specification is distributed.

Information systems development is a complex combination of activities. It requires a knowledge of
the application domain, of specification schemes and of ways that these schemes are used. The key to
managing this knowledge is to structure it so as to provide a partitioned, distributable organisation for
the information systems development process, and a partitioned, distributable structure for the
software specification. We believe that a common partitioning and structuring is both possible and
desirable.

This presents three particular challenges: finding a common structure that accommodates both
software structure and the development process; finding a means of handling the different
structuring approaches required at the various stages of development; finding a means of working
with many representation schemes. We discuss these briefly below.

Common structure for software and the development process: Developing software-in-the-large
involves many participants, with experts in various aspects of information systems development and
in various aspects of the application area. In addition, each participant may have different roles,
responsibilities and concerns which may change and shift as the information system develops and
evolves. Participants have knowledge which they want to bring to bear on the development of the
specifications. This knowledge will generally complement that of the other participants but may also
overlap, interlock and conflict.

This presents us with two groups of closely related problems:

With all these participants how can we guide and organise the process of information systems
development? How do we assign and maintain responsibilities?

How can we allow each participant to see only that aspect or part of the "specification world" which is
relevant to that participants interests and responsibilities while preserving consistency between them

Despite the obvious relation between these groups of problems they are commonly treated separately -
the first in so-called software process modelling languages, the second in specification languages.
The structuring schemes employed are generally mutually incompatible.

Structuring at different stages of development: A well known difficulty, which arises with all
approaches to structuring in information systems development, is that of "structural
transformation". What appears an appropriate structure for carrying out requirements analysis is

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

17

As an ideal, the reuse of fragments of specifications is clearly desirable. The benefits in terms of cost
and convenience are obvious. In addition, there is a reliability benefit in terms of the inclusion of
previously 'validated' specifications. It is, however, acknowledged to be a very difficult problem
requiring advanced technology.

There is a need to identify, characterise and retain specification fragments which are good candidates
for future reuse. These form the base cases from which an analyst selects. Sophisticated and versatile
search strategies are necessary to select matching fragments for the target environment, even where
the base and target application domains may be very different. Finally there is a requirement for
tailoring reused specifications to suit the new environment.

5.2 Approach

CORE as it stands incorporates no notion of reuse, indeed it can be argued that the underlying
philosophy of methods like CORE which proceed in a “top-down” fashion from the identification of
viewpoints, agents or the like, actively militate against reuse which is inherently “bottom-up”. Reuse
has to be retrofitted to the method. To do this some preliminary decisions must be made, most notably
the choice of the reuseable building block. We have chosen transactions (CVMs) which seem to us to be
manageable in size, sufficiently information rich to offer a return over and above the cost of use and
management of a reuse library, cognitively acceptable. The disadvantage of basing reuse on
transactions is that transactions as such are never explicitly manipulated by CORE, unlike for
example viewpoints or data flows. Transactions are orthogonal to a decomposition of a system by
viewpoint and “drop out” of the analysis as a “by product”, albeit a very useful one.

5.3 Status & Experience

A prototype tool - TRUE - to support Transaction Reuse has been developed. This tool is based on a
model of reuse partly derived from artificial intelligence research on analogy. The tool is integrated
with The Analyst by means of transformation and note passing tools similar to those of the Animator.

The tool contains implementations of contextual views - means of looking at the reuseable
transactions through the filter of steps in the CORE analysis - and a set of the global views including
class inheritance classification and browsers for synonyms and annotations. Pattern matching
strategies have also been implemented these include means of using weighting and combination of
weightings on pattern matches. Strategies drawn from analogical reasoning have been implemented
(in a relatively simple minded way) these include generalisation based, causal chain and purpose
matching. Method guidance, which controls and ties together views and strategies by prescriptive
guidance on their use, is in the form of a “help” system. Although not implemented, heuristics could be
integrated into the larger method guidance scheme of TARA. Allocation and restructuring, the
process by which a reuseable transaction is placed in its new setting and the functionality distributed
across the new viewpoint structure, has proved difficult to support. Instead the tool allows free editing
and flags outstanding inconsistencies in the emerging new transaction.

A full description of TRUE appears in Finkelstein (1987).

6 ViewPoint Approach

Experience in the TARA project has exerted a substantial influence on our research work, not only
from the specific details of the TARA research but also as a result of the use of the CORE method and its
application to a substantial case study (Kramer et al 1987). In particular it has lead to favour support
for software development by methods consisting of many, relatively simple, representations tightly
coupled to each other by large numbers of consistency checks. Furthermore, the partitioning of the

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

16

the user with some basic operators to perform data processing. In addition, we have found it useful to
leave some action definitions "open" in that it is left to the user to make some of the decisions at
animation time. In this way a given transaction can be conveniently used to generate scenarios
which differ in the decisions that are taken at particular points in the transaction. The user must be
prompted for the decision at animation time. Two forms of these open actions have been provided. The
simplest means is for certain actions to be left undefined, and for the user to be required to "simulate"
the action at animation time by providing the required outputs. This mechanism can be used as a
default for actions which are too complex to define, are actually performed by a person, or are not yet
well understood and defined. An alternative is where part of an action is to be left for user decision. A
simple extension to functions available provides this facility.

4.3 Status and Experience

A prototype animator has been implemented in Prolog on the Apple Macintosh. It conforms to the
familiar Macintosh interface and has full graphics support for the generation and manipulation of
transaction diagrams. Figure 11 shows a snapshot of the Animator in use, with data values on the
arcs.

Figure 11: Animator interface.

It was intended that the animator should be integrated with The Analyst so that CORE specifications
produced by The Analyst could be animated directly. However, this would have proved to be too slow
and cumbersome, and it is doubtful a usable response time would have been achievable with the
implementation of The Analyst available at the time. The integration has therefore taken a weaker
form by providing a transformation tool to transform The Analyst specifications into a form used by
the Animator, and a mechanism for posting notes from the Animator back to The Analyst to indicate
comments or changes required as a result of animation. Although the animator could be used for data
flow diagrams in general, it has been designed to take into account some of the specifics of CORE, such
as channel (stream) and pool (store) data flows.

A full description of the Animator appears in (Kramer & Ng 1988).

5 Reuse

5.1 Objectives

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

15

detail may actually obscure the more general requirements that are being specified. That is not to say
that we do not believe in those approaches, but rather that they should be used in later phases of system
specification. Animation seems to provide the right balance for this level of requirements
specification and for obtaining a reflection of its intended behaviour.

4.2 Approach

Many requirements analysis methods involve, at some stage, the identification of actions and data
flows within the proposed system (e.g. SADT (Ross 1977) and PSL/PSA (Teichroew & Hershey 1977)).
Although all these actions will be related in some way, there will typically be smaller groups of
interconnected actions which interact more closely to perform some specific sub-task of the system.
We refer to such a group of actions as a transaction. In CORE a Combined Viewpoint Model (CVM) is
prepared for each transaction of interest. The prime use of an animator is the validation of
transactions, particularly those which involve critical performance or reliability aspects of the
proposed system. Animating a transaction is essentially playing out a scenario which may take place
in the eventual system. Consequence testing of this nature often shows up loopholes in the
specification.

For this purpose, the animator should be capable of interaction with the analysis tools: in this case The
Analyst. The Analyst specifications are transformed for interpretation by the animator. Since the
main purpose of the animator is to provide an interpretation of the requirements to the client for
validation, the result is likely to be correction and modification of the specification. The note passing
mechanism, discussed above, provides a convenient means for transmitting the required
modifications back into The Analyst.

There are several ways in which a scenario can be animated from a static action/data flow
description. Our approach, which we refer to as transaction animation, is one in which there is no
separate building and executing phases - each action is executed immediately after it is selected.
Hence animation involves interactively selecting and executing each of the actions of interest. This
form of animation allows the user to choose alternative decision paths based on the current state of
animation. It is also very useful for browsing through a specification in the form of computer-aided
walkthrough without knowing before hand which are the actions of interest. We also support a strategy
in which animation is divided into two distinct phases - the building of a transaction and the
“execution” of the transaction. A transaction is built by single-stepping through the specification,
selecting the actions of interest. When this is done, the actions are executed in turn. This strategy is
useful when the user knows before hand exactly what actions are involved in a particular scenario.

It is clear that to be able to “execute” an action one needs to associate some form of executable code with
the action. We call this the action definition. In the simplest form, action descriptions can be
expressed as mappings from an action's input data to its output data. Clearly this type of definition is
only suitable for describing the very simplest of actions, or if the user intends to use the animator only
as a browsing tool and is not particularly interested in the data transformation and processing that
normally takes place within an action. For a more realistic model of the system, more sophisticated
forms of action descriptions are needed. One approach would be to describe actions using a
conventional programming language such as Pascal or C, where an action definition is essentially a
program fragment of the proposed system and can be executed by running it through an interpreter or
by having it pre-compiled. Although more suitable for describing algorithmic processing of data, this
approach requires a knowledge of the language used, and tends to make describing simple actions
unnecessarily detailed and complicated. It is also more akin to prototyping and may lead to
premature decisions on the use of language, data structures and algorithms.

For the purpose of animation, we believe that action descriptions should be kept as simple as possible,
but at the same time they should be capable of expressing some form of algorithmic processing. Our
compromise is to use the mapping approach as a basis for describing actions, but extend it by providing

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

14

Nuclear Power
Safety Viewpoint

?
Operator

?
Nuclear Generator Safety

Monitoring Systen
Environment

Data Acquisition
System

Figure 10: Current state of the Analysis.

4 Animation

4.1 Objectives

Most approaches to requirements analysis are strong in their representation of structure, but weak
when specifying processes. They usually produce a specification in terms of a composition of actions
and data flows, but cannot reflect the intended behaviour in a dynamic, process form. This imbalance
needs to be redressed by augmenting representations to provide further process information to support
facilities such as specification animation.

Animation of a specification is the process of providing an indication of the dynamic behaviour
specified by walking through a specification fragment in order to follow some scenario. Further
process information for the actions can be added by specifying the mapping from inputs to outputs.
Animation then involves (dynamically) stepping through some specification examining the
resulting output behaviour for given inputs. This can be contrasted with analysis of static, structural
properties on the one hand (such as given by data flow diagrams) and detailed prototyping on the other
(such as the basis for an implementation). Animation can be used to determine causal relationships
embedded in the specification, or simply as a means of browsing through the specification to ensure
adequacy and accuracy by reflection of the specified behaviour back at the user. In particular, there is a
need to permit reflection of specified behaviour under different circumstances (ie animation replay
with different data values). This is sometimes referred to as "what if ..." or consequence testing.

Animation is deliberately less exact and detailed than current work on either executable
specifications, such as PAISLey (Zave 1982) or rapid prototyping, such as PDS (Klausner & Konchan
1982). Both can provide a more exact execution of the specification but require far more information
and expertise. We feel that this is inappropriate to this level of specification, where such formality and

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

13

Figure 8: Example of advice

Figure 9: Example of advice

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

12

set of heuristics.

Active Guidance is generated in three stages: collection of all plausible actions generated by the
normative model and the notes generated by The Analyst according to the remedial model; ordering
and possibly filtering these actions by prioritisation heuristics; presentation of advice, status
information and explanations to the tool-user on demand.

In order to derive suitable prioritisation heuristics several attributes have been identified on which to
judge each piece of advice. A priority is assigned to each piece of advice to be presented to the user of
The Analyst and which is designed to indicate its importance. This final rating is derived from a
combination of factors which are associated with the different attributes of the advice.

Advice is generated on user-demand and results in The Analyst exercising the normative model and
collecting notes associated with previous diagram checks. A simple analysis of the normative advice
reveals the stage and level which the user has reached, while a count of the number of notes attached to
the requirements analysis gives a rough indication of its correctness (although this is naturally
dependent upon the amount of checking that has been performed). Figure 6 shows a summary of the
notes outstanding, Figure 7 shows a list of the advice according to their weighting, Figures 8 and 9
show further explanation of the notes obtained on request. The user may request that a representation
of the current state of the analysis is shown in graphical form (Figure 10) In this summary the type
(tabular collection form, data structure diagram, SVM etc.) and status (empty, started, finished, notes
attached etc.) of each diagram is given.

Figure 6: Summary of Notes outstanding.

Figure 7: Prioritised list of the advice

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

11

Figure 5: Typical Note contents.

Remediation is necessary whenever the current specification exhibits a method anomaly. Because of
the nature of requirements analysis methods and practitioners' preferred ways of working, not all
anomalies should be regarded as outright 'errors', although some undoubtedly are. The general
classes of anomaly have been kept as generic as possible so that they could apply equally to methods
other than CORE, although the rules for detecting an anomaly in a specification database are, of
course, method-specific. Among the general classes of anomalies are missing precursor, where a
diagram has been created before one on which it depends. In CORE, a single viewpoint model depends
upon a corresponding tabular collection form and data structure diagram. If either of these is missing
in the presence of the single viewpoint model, then it is missing a precursor. Another is the premature
analysis where a step has been performed before it should be, even though all its precursors exist. An
example of this in CORE is where analysis is started at a level of the viewpoint hierarchy, when
analysis at the previous level is still incomplete.

It is not possible to anticipate all possible anomalies and devise specific remediation strategies for
them. General mechanisms are quite feasible, however. For example, the remediation strategy for
coping with a missing precursor is to recommend the creation of a precursor, followed by re-analysis
of all its dependents. The remediation strategy for coping with premature analysis is to give higher
priority to all actions still necessary at the previous level than to those now possible at the lower level.

Usually, in any situation the practitioner could perform a large number of actions. Some follow from
the normative component of the method model. In a perfect CORE project only these actions ever need
be performed. Others are remedial actions to correct inconsistencies and incompletenesses that have
arisen as the specification evolves. Finally, there are simple clerical actions, such as the completion
of diagrams that exist but which are known not to be complete yet, or the analysis of diagrams that have
not been analysed since a prior change or the receipt of a note. Given the range of possible courses of
action, the active guidance system must restrict its advice by filtering the candidate actions through a

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

10

structuring diagram and asks for any notes attached. A list of all of the abstracts is presented, the
abstract in this case being "New Viewpoint Introduced". Figure 5 shows the result of opening the note.

Figure 4: Note attached to a diagram

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

9

reference is attached to each of these diagrams which indicates the source of the note.

During the generation of notes, The Analyst associates both a cause and a possible remedy with the
note. A cause is defined as a generic type of anomaly together with a specific object-type and name. A
remedy is a generic action that may be applied to the named object in order to solve the problem.
Several generic kinds of cause and remedial action have been identified and are presented in Table 1.

Anomaly Remedy

Duplicate An object has been defined
twice within the same diagram
or duplicate diagrams exist
within the same project.

Rename - one of the objects

Abandon - one of the diagrams

Syntax A syntax error has occured Ammend - the object in order to comply
with recognised syntax

Too many One feature of the diagram is
becoming too complex e.g.
too many data flows on one
action.

Simplify - reduce the complexity

Decompose - split the object into
 componants

Inconsistent An object on diagram " d1 "is
missing from a corresponding
diagram "d2".

Add - add the object from "d1" to
diagram "d2"

Delete - the offending object on
diagram "d1"

Rename - the offending object on
diagram "d1" or an existing
object on diagram "d2"

Illegal
Decomp.

A decomposition action is
being performed on an object
 which cannot be decomposed

Abandon - give up on this action

Premature A stage of the method is being
performed on a diagram
before completion of steps at
a previous level

Abandon - go back to a previous step

Table 1: Generic Anomalies and Remediation Mechanisms

Each of the remedies associated with a single cause are mutually exclusive; that is compliance with
one problem-solution will render others redundant. However more than one note may be connected to
a single remedy and each of these must be acted upon in order to correct the original anomaly.

Consider the following example. The practitioner has completed the viewpoint structuring stage and is
constructing the tabular collections for the first level viewpoints. During discussions with the user
about a particular tabular collection it is discovered that a new viewpoint is needed in the viewpoint
hierarchy and as a destination for data flows. The analysis component of the tool detects this anomaly
and asks the practitioner to either Cancel the new name or to deduce the remedial notes using the
Ignore option as in Figure 2. When the practitioner chooses Ignore, notes are attached to the diagrams
which are potentially affected by this anomaly. In particular a note is attached to the viewpoint
structuring diagram. In Figure 4 we see what happens when the practitioner opens the viewpoint

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

8

associated with Goals.

Goals are created (activated) by events which transform the specification database into a certain
state. The characteristics of this state we term pre-conditions. A Goal is deleted (terminated)
again when an event causes the database to achieve a certain state. The characteristics of this state
we term completion-conditions. The aspect of automatic deletion of goals given these completion-
conditions has not been addressed in the project. It should be noted that a particular event can cause
both the posting and termination of multiple active goals.

A Goal affects a Diagram if the completion-condition of the Goal includes a desired state for the
Diagram e.g. validation to a particular level.

Diagram

Any Diagram in the specification.

Note

A note generated by the Active Guidance system.

Anomaly

Some anomaly detected by the system as a result of a user action.

Several approaches to representing the normative model have been investigated. The simplest
approach is to model CORE as a context-free grammar, the alphabet of which denotes the types of
method events or actions performed by the practitioner. These events are described above. A prototype
using such a model was constructed. Unfortunately, the rules of CORE are too context-dependent for
this approach to support more than the simplest form of guidance.

A second approach was to develop a formal definition of a large body of CORE in the modal action logic
of Maibaum, Khosla and Jeremaes (1986). This approach, which appears a promising basis for further
work, is not discussed here.

In the prototype, a more pragmatic approach was adopted: the normative model is encoded as a set of
Prolog clauses. This includes the context-free grammar rules, integrity constraints such as those
defining the binding of parameters, and the termination conditions for iterative steps. The method
model can be used in conjunction with the specification to generate a set of acceptable next steps at the
diagram level. That is, it is known whether a diagram level step has occurred (referred to as a method
event) depending on the presence of a complete version of the diagram it is known to produce.
Recommendations beneath the level of diagrams are mediated by notes attached to diagrams. This is
discussed below.

When The Analyst detects an inconsistency or incompleteness in the specification it does so as the
result of a check on the current diagram. The error may have resulted from an error in the current
diagram or earlier related diagrams. If the user decides that the current diagram needs revision it
can be changed there and then. If, however, the other diagrams need changing or the current diagram
needs changing but the user decides to defer the revision until later, some note must be left attached to
the diagrams in question explaining the kind of change required and why it is necessary. This
facility is under the control of the user in the sense that the Active Guidance may be switched off. In
this case the user is warned when anomalies are detected but if they decide to continue with the change
no attempt will be made to assess the impact of the anomaly.

Often only one note is required although its contents may apply to more than one diagram, thus a note-

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

7

Significant
Event

Anomaly

causes

terminatesactivates

Note

attached to caused on

(activates)

generated by

affects
gives rise
to

Goal

Diagram

Figure 3: Data model of active guidance

Significant Event

A significant event is an action or sequence of actions by the user which invokes the method rules
within The Analyst. For example, the user actions of selecting an area of text, modifying the text
and deselecting the area. A Significant Event causes Anomalies to be detected when the event
would result in an inconsistent state of the specification; activates a Goal when the event results in
the specification satisfying the pre-conditions of the Goal; terminates a Goal when the event
results in the specification satisfying the completion conditions for the Goal.

Goal

A Goal is a desired state of the specification. We have considered two styles of goal: goals in which
the desired state is to correct an anomaly, e.g. "update all of the diagrams which are affected by the
new dataflow I have discovered", and goals where the desired state is the completion and
validation of one or more diagrams, e.g. "the completion of all the Tabular Collections at a given
level in the Viewpoint Hierarchy". These different styles are reflected in two of the relationships

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

6

and it would be difficult to provide any justification of the advice beyond displaying canned text
messages. As most methods do not exist in canonical or standardised versions, but instead have
varying house and individual styles, it is important that the method model be accessible for
modification without requiring re-coding. Not only do methods exist in different versions, but even in
a single organisation they may change over time as a result of experience or the demands of new
applications. Finally, constructing an explicit method model is an essential part of engineering any
method support tool. It is seldom the case that a method is sufficiently fully documented to permit
implementation without recourse to a method expert. A method model encourages an incremental
development approach, and furthermore, brings to light ambiguities and gaps in the method that may
have previously been ignored.

Any method model involves a normative component, and a descriptive component. The normative
component contains rules about what to do in different situations and the descriptive component
encodes knowledge about the concepts underlying the method.

If the generation of guidance is to be seen by the user as a central part of the tool's behaviour with no
external difference between the guidance and analysis components of the tool, there must be some
mechanism for the guidance component to inspect the checks performed by the analysis component. A
well-designed method associates a small set of representations with each step. For example, CORE
produces a single diagram in a step. A natural means of linking the analysis and guidance
components, therefore, would appear to be at that level, with the analysis component attaching notes to
the diagrams that may need revision and the guidance component inspecting the position, and in
some cases the content, of such notes.

Using the normative model together with the notes produced during analysis, the tool should be able to
explain the current state of the requirements analysis and what actions are required to complete it. In
short, active guidance should answer the questions:

"How am I doing? " and "What should I do next?"

Finally, if active guidance is to prove useful in requirements analysis, it must be possible to
experiment with different advice giving principles. Useful active guidance must therefore be under
the control of easily changed advice-giving heuristics. In most cases these will be method-specific.

3.3 Status and Experience

An active guidance system for CORE has been implemented in Prolog within The Analyst. This is
tightly coupled to The Analyst so the user sees the combination as one system. We briefly describe the
architecture of the guidance system in terms of a simple data model (Figure 3) and describe the
implementation of the active guidance system.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

5

Figure 2: The Analyst in use

3 Method Guidance

3.1 Objectives

Many requirements analysis methods are in use in industry, and most practising systems analysts
are familiar with one or two. However, the range of expertise is vast. There are few real experts in a
given requirements analysis method in the same sense as a Pascal programmer with five years solid
experience is a Pascal expert. Automated tool support for requirements analysis may not, therefore,
benefit from the 'power tools' paradigm (Sheil 1984). Instead, a requirements analysis tool must be
seen as an intelligent assistant that caters for users of widely varying degrees of expertise in the
requirements analysis method.

Requirements methods are systems of recommended procedures and are intended to supplement
rather than replace an analyst's skill. Advice should be provided to support normal use of the method.
However, a support tool that could not deal with deviations from the recommended method and treated
them as 'errors' from which it could not recover, would be unacceptable. A crucial part of any active
guidance system for a requirements method is the remediation mechanism whereby possible repair
procedures are deduced and recommended to the practitioner. In addition, the guidance system should
include some ordering or prioritisation of advice between alternative actions, such as corrective
actions before method steps.

3.2 Approach

To provide normative and remedial advice, an active guidance system must maintain an internal
model of the method. Rather than being hard-coded, this method model should be explicit and directly
examinable. There are several advantages in representing the method directly. A hard-coded method
model could give rise to sensible advice, but it would necessarily be less flexible and context-sensitive,

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

4

Tabular collection represents a viewpoint's responsibilities as a set of actions. These are tabulated in
a tabular collection form which lists the actions, their input and output data and the sources and
destinations (other viewpoints) of the data. In data structuring, the output of each viewpoint is
analysed. A diagram is produced resembling a Jackson structure diagram which shows the legal
sequencing of the outputs. Using the actions and their interfaces from the tabular collection form and
the order of production of the outputs from the data structuring, the practitioner can now draw a single
viewpoint model (SVM), a data flow diagram, for each viewpoint. An SVM contains additional
information, such as internal data flows, repetitive or optional actions and control flows. Information
from several SVMs can be merged into a combined viewpoint model (CVM) for that specific level. An
arbitrary number of CVMs could be prepared for any complex system, so only actions that are
pertinent for a particular transaction are selected for a given CVM.

Thus while CORE uses a reasonably rich set of representations, it is far more than just a collection of
representational techniques. The interrelationships between the representations are not simple, and
the redundancy that is encouraged obliges the practitioner to perform a large number of consistency
checks. At any point in a project it may be possible to proceed by performing a variety of method steps.
CORE includes many heuristics at the strategic and tactical levels to help the practitioner decide
which is best.

2.2 The Analyst

The Analyst, developed by SD-Scicon (Stephens & Whitehead, 1985), is an interactive software tool
which supports the CORE method. It provides a basic set of clerical tools for storing and presenting
graphically CORE specifications. It includes rule-based consistency checking implemented in the
logic programming language, Prolog. For instance, syntactic checks for ill-formed diagrams are
made before storage, and semantic checks (eg. data flows with no specified destination) can be done
either continuously or on demand.

Figure 2 shows a typical snapshot of The Analyst in use. During construction of a tabular collection
form a consistency check has been invoked and an error signposted.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

3

CORE is one of the few truly prescriptive methods available. It consists of a series of steps which
elucidate the user view of the services to be provided by the envisaged system and the constraints
imposed by its operational environment, together with a limited amount of performance and
reliability analysis. It provides techniques and notations for all phases of elicitation, specification
and analysis of requirements and results in a structured, action/data flow form of specification.

In CORE the constituent steps should be performed in a well-defined order. Figure 1 illustrates the
grammar of a perfect use of the CORE method in the form of a structure diagram (Jackson 1975). (Two
steps of CORE not directly supported by The Analyst have been omitted from the figure).

*

CORE

Viewpoint
Decomposition

Viewpoint
Structuring

Level

Tabular
Collection

Data
Structuring

Single
Viewpoint
Modelling

Combined
Viewpoint
Modelling

CVMSVMDSDTCF

* * *

*

Figure 1: DSD showing the steps of CORE

In the first step, the domain of discourse is partitioned into disjoint viewpoints. These entities are
organisational, human, software or hardware components of the system and its environment. Some of
these are designated as indirect viewpoints, and are of interest only as sources or destinations of data.
The rest are direct viewpoints, and are to be subject to further analysis. To aid the understanding of
complex systems, direct viewpoints are decomposed into sub-viewpoints recursively until they
represent a sufficiently simple role. The remaining steps of the method are repeated at each level of the
viewpoint hierarchy.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

2

TARA: Tool Assisted Requirements Analysis
Anthony Finkelstein & Jeff Kramer

Imperial College, Department of Computing, UK

0 Abstract

The TARA Project conducted research into the provision of tool assistance for requirements analysis
techniques. In particular it concentrated on automated support for three specific areas: active method
guidance, requirements animation and the reuse of specification fragments. In this article we
discuss the aims and status of TARA and the application of CASE technology within a method
framework. In addition, we outline work on specification and method integration which is based on
some of the approaches developed within TARA.

1 Introduction

Requirements analysis is one of the most critical tasks in information systems development.
Unrecognised errors made early in the development process may have widespread repercussions in
the later phases. As a consequence, the cost of correcting such errors is high (Boehm 1982). Support for
requirements analysis is therefore crucial. The main focus of our work was the large class of systems
which can be classed as "real-time information systems"; that is systems which must satisfy
temporal constraints and are also data rich. Examples of such systems are: military command,
control and intelligence systems; trading and financial information systems; hospital patient
monitoring systems.

The particular objective of the TARA (Tool Assisted Requirements Analysis) project was to examine
three important extensions to current CASE technology in the area of requirements analysis.We were
interested in the role of automatically provided method guidance to support the use of requirements
analysis methods, the ability to use software tools to help clients and analysts visualize the behaviour
of the specified system by animation of the specification, and the possibility of supporting the reuse of
specification fragments or parts of existing specifications in the composition of a new specification.

The intention was not to construct another diagram editor and requirements specification technique.
Hence we adopted as a base for this work an existing, widely used, requirements analysis method -
CORE - and a CASE tool for diagram construction and consistency checking - The Analyst.

An earlier paper (Kramer et al 1988) provided an incomplete and preliminary view of the TARA
project. This article provides the first comprehensive description and discussion of the TARA work
and its contribution. We first outline CORE and The Analyst, and then present and discuss the work
in each of the three areas of concern. In a concluding section we outline a new approach to information
systems development, based in large part on insights gained from the TARA project, which explicitly
avoids the use of a single representation scheme or common schema. Instead, multiple "ViewPoints"
are utilised to partition the domain information, the development method and the formal
representations used to express information systems specifications.

2 Background

2.1 CORE

CORE is a widely used requirements analysis method in the UK. First documented in (Mullery 1979),
a comprehensive account is given in the manual (Systems Designers 1986). We assume that the reader
is familiar with the spirit of formatted requirements analysis methods. The following brief summary
of CORE specifics should be sufficient for the purposes of this article.

systems development, Loucopoulos, P. & Zicari, R. (John Wiley) 1991, 413-432.

1

